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ABSTRACT

The root-locus technique used in the determinntion of system response

has been a powerful tool for the engineer. Shortcomings of the technique,

however, particularly in regard to the locations of imaginary roots and

the frequency stability of the system for changes in the system gain,

have made a supplementary technique desirable. Such a technique utiliz-

ing the projection onto the K- ^»-o plane of the three-dimensional root-

locus has been developed. The use of the root-locus plot in conjunction

with the K- \<-o trace eliminates these shortcomings and provides the

engineer with j;till another tool in his quest for a more complete method

of systems analysis.
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INTRODUCTION

For many years engineers have been using root-locus methods of

solving high-order polynomlnal characteristic equations of control

systems. As an example, consider the simple servo system shown in

Fig. 1.1.

xw
> GW

HW <

> Y(a)

SIMPLE FEEDBACK CONTROL SYSTEM
Fig. 1.1

In general, the blocks 6 and H represent any pole-zero combinations

which might describe the system. The characteristic equation of the

system is

\ + GH * O
,

which can be written in general terms as

<*-(<•*.
) U+TU) • • • • C**«)(4+fcB) . . .+

where n 1, 2, 3, - - -

K root- locus gain

P pole of G
G

1.1

H
pole of H

zero of G

Z zero of H
H

A
s * Laplacian variable s <r"4yA>

1



Obviously, equation 1.1 could be a polynominal of any order, and the

analytic solution of this equation becomes tedious and impractical as

n lncntMi. Cornaquantly, th« root-locui method of olutlon baaad upon

the pole-zero configuration of the open-loop transfer function GH, which

is both simple and straightforward, has been widely used in engineering

practice. Such a plot provides a wealth of information about the system

in question and is relatively easy and quick to obtain. There are, how-

ever, certain shortcomings to the method. Notably, the root-locus plot

of a given system response does not permit ready evaluation of the loca-

tions of roots of the characteristic equation for a given value of the

root-locus gain, K, or over a specific range of K. A trial and error

measurement procedure is required, and for very small K where the roots

lie close to the poles, this graphical method usually fails completely.

In addition, there is no information concerning sensitivity of the system

to changes in gain.

The first of these shortcomings has been partially resolved by Dr.

R. C. H. Wheeler, of the U. S. Naval Postgraduate School. Substituting

A*<T4.W> into equation 1.1 and letting ^U)so » Dr. Wheeler was able to

obtain a plot of K vs. (T (called the "Wheeler plot"). With the Wheeler

plot, the real roots of the characteristic equation can be determined,

if they exist, for any value of the root-locus gain. The most valuable

contribution of the Wheeler plot was the prediction of a maximum or a

minimum value of K for those GT at which -the root- locus emerges from or

enters the <T"-axis. Thus, the value of K at these points, called FL^

and K_._, respectively, may be quickly determined from the root-locus

plot without the necessity for plotting the Wheeler plot. An example

of the Wheeler plot is shown in Fig. 1.2 for the open-loop transfer

function, GH - K (*t*) „



Root- locus

>T"

WneeLEi? plot

><r

ROOT-LOCUS AND WHEELER PLOTS FOR GH - Kt**2;) FOR < > o

ARROWS DENOTE INCREASING K.

Fig. 1.2



However, no information is available from the Wheeler plot concerning

complex roots, nor even about the real parts of such complex roots.

Returning to equation 1.1 as the first step in searching for

answers to these shortcomings, the substitution of 4.- (T-kjio immediately

revealed this to be an equation in the three variables, CT , ^ Co , and

K. Since the root-locus is a plot of (Tvs. iu> for varying K, such a

plot is actually the projection upon the O"-^**) plane of the three-dimen-

sional plot of equation 1.1.. Such a three-dimensional plot for the pre-

vious example, GH ——} . I,\ » is 8hown in Fig. 1.3 and is interpreted

as follows:

1) Curves B and C represent the three-dimensional plot of

the characteristic equation.

2) Curve B, for which Vw*0» is the Wheeler plot for the

system. This curve is identical to the plot shown in

Fig. 1.2 for this same system.

3) Curve A, being the projection of the three-dimensional

curve upon the T-jw plane, is the root-locus plot for

the system.

4) Curve D, the projection upon the K-4Q plane, is called

the "K-4U) trace" in the succeeding development.

Curve D of Fig. 1.3 showed great promise of providing a solution to

the shortcomings mentioned previously connected with the root-locus plot:

the imaginary part of any complex root is immediately available for any

value of K, and the frequency stability for varying K is obvious by in-

spection over any given range of K. The problem, then, became that of

determining whether the K -^u) trace for any given system could be

4



TJW

THREE-DIMENSIONAL PLOT OF 1 + GH - FOR GH K (4±j)

FOR K 20 AND FOR > 20 . ARROWS DENOTE

INCREASING K.

Fig. 1.3



sketched quickly and accurately. Speed and ease of sketching were

paramount requirements; otherwise, a graphical trial and error pro-

cedure utilising the root-loeut would provide the required information

without the necessity for making an additional plot.

Two methods of attack were pursued in seeking a solution to the

problem of rapidly and accurately sketching the K -^va) trace for any

given open-loop transfer function:

METHOD I : The location of poles and zeros on the K-axis

through some suitable transformation upon the poles and

zeros of the given open-loop transfer function.

In searching for a suitable transformation to use, an independent

variable, M, in the K -^u> plane was defined as follows: M « K-vm

where M was a vector in the K -4m plane from the origin to any point

(K, ^u> ) on the K -^ud trace. M, then, corresponded to the Laplacian

vector, a, in the Q\jio plane. These vectors are depicted in Fig. 1.4,

><r
-a.

> <

ROOT-LOCUS PLOT AND K - 4«*> TRACE FOR GH FOR <fcO AND

4U>20 SHOWING THE RELATIONSHIP BETWEEN THE VECTORS T AND "m.

Fig. 1.4



The attempt was then made to express the open-loop transfer function

in the form

where small letters denote zeros on the K-axls, capital letters

(except M) denote poles on the K-axis, and n represents the system

utype" when the transformation has been completed. This method broke

down immediately, however, as soon as it was attempted with the simplest

second-order system, GH - \ . Substituting A-<r+^> into the equation

1 + GH - resulted in t

g-VCHF"-* vc + 4ir«jj = O 1<3

Inspection of equation 1.3 revealed the impracticability of separating

M and obtaining the desired form of GH. This can be seen more clearly

o
by dividing equation 1.3 by K + (^U)) , resulting in

Equation 1.4, then, shows the two difficulties encountered using this

method: 1) the inability to form the vector M, and 2) the inability

to completely separate out the independent variable T . This method

was attempted on several different transfer functions with the same

(and often worse) result. Consequently, method I for obtaining the K~4W

trace was abandoned.

METHOD II : The location of critical points on the K-axis such

that a set of rules similar to those used for making a root-locus

plot might be established for sketching the K -\to trace.



Basically, this method involved looking at the projection of the

three-dimensional curve of the characteristic equation upon the K-^to

plane. From this projection, then, critical points were established

as appeared most promising for the system under consideration. Al-

though the results in some cases were slightly different than antici-

pated, the use of this method provided a successful solution to the

problem of obtaining the K-4UJ trace quickly and accurately. For

the case of characteristic equations in the form of second-order poly-

nomials, the K-4U) trace was determined analytically - the develop-

ment for this case is traced through in chapter II. For characteristic

equations in the form of third or higher order polynomials, an approxi-

mate graphical method of obtaining the K -_\uj trace was developed as

shown in chapter III.

Utilizing method II, therefore, it was shown that the K -4«*> trace

for any given open-loop transfer function can be sketched quickly and

accurately using the concepts developed in the succeeding two chapters.



II

SECOND-ORDER SYSTEMS

2.1 DISCUSSION , For the purpose of this development, a second-order

system is defined as a system having a characteristic equation in the

form of a polynomial of degree less than or equal to two. For such a

system, a relatively easy analytic solution to both the root-locus plot

and the K—j<o trace was obtained.

The Laplacian variable,- s » ^~+j4*3 , is a vector whose variable com-

ponents (in the mathematical sense) are T" and 10 , with J
2 "^-' being a

90° rotation of the o> -axis from the T -axis. In engineering practice,

however, the variables are usually taken to be <r and jco — hence,

the term "K- jto trace". Although this term is used throughout this

paper, the second variable will be oJ rather than Jto for purposes

of the mathematical development in this chapter, although the variable

plotted will be jco . Elsewhere in this paper, jw will be used as the

variable in accordance with accepted engineering practice. The illustra-

tions shown in this chapter will be plotted only for positive values of

K, since negative values of K result in a 0° root-locus. The K-Jco

trace for negative values of K is discussed in chapter III.

GH

As a general second-order system, the open-loop transfer function,

h4^
4^* F '

Was U8ed f°r thls d^e10?1116"*-

2.2 ROOT-LOCUS PLOT . The characteristic equation, 1 + GH 0, of the

general second-order system became:

1
Although this is not a new concept, the work was original and

necessary for the development of the K- jto trace following in
section 2.3.



Substituting s T"+Ju> resulted in the equation,

Noting that this equation was in the vector form, *>"*"j'P
= ^ » it

followed that 0^ and - 0. Writing these expressions explicitly

yielded the pair of equations,

(b+A*V 2 -(b4AK)<>2 +(E-r&K)<r-i- F+CK «0 21

and

2.2

The reason for using cO as the third variable now becomes evident:

equations 2.1 and 2.2 are the parametric form of the characteristic

equation and therefore are the parametric form of the curve of the

characteristic equation. These equations, of course, were obtained only

under the assumption that the characteristic equation could be written

in vector form, which necessitated using u) as the variable. Equation

• 2.1, with 0) - 0, is the equation of the Wheeler plot. For this condi-

tion (i.e., G* « 0) the root-locus is easily determined as well as the

Wheeler plot, and no further investigation of this condition was deemed

necessary.

For the condition <0^ , however, the root-locus is not so easily

determined, and the Wheeler plot is not defined. Now, the root-locus plot

becomes a projection of the three-dimensional curve of the characteristic

equation upon the T^jW plane. From equation 2.2 it was evident that v>-£0

implied the variables <T *nd K could be determined in terms of each other,

yielding:

10



K-»r*"
£Ar+8 2.3

and

n

The projection of the three-dimensional curve upon the V-jcJ plane,

then, was obtained by substituting equation 2.3 into equation 2.1.

Performing this substitution, collecting terms and completing the square

in V resulted in the equation,

Clearly, equation 2.5 is the equation of a circle centered at

with radius

It was concluded that the portion of the root-locus plot for which

wV O for all second-order systems is a circle. This circle can be

determined exactly by using equation 2.5 in conjunction with the coef-

ficients of the open-loop transfer function with two exceptions:

1) For an open-loop transfer function containing no zeros,

A » B 0, and equation 2.5 no longer applies. Returning

to equations 2.1 and 2.2 in this case, the circle is de-

generate into a straight line given by

TV--ft;

2) For an open-loop transfer function having a pole-zero

configuration resulting in poles separated by zero (s)

,

or vice-versa, there is no root-locus for co^ O

11



Open-loop transfer functions with pole-zero configurations resulting in

the applicability of the foregoing two exceptions present no difficulty

in quickly sketching an accurate root-locus plot. The root-locus plot

for all other second-order systems may also be quickly and accurately

sketched by substituting the coefficients of the numerator and denomi-

nator polynomials of the open-loop transfer function into equation 2.3

to determine the center and radius of the required circle.

2.3 K- jCJ TRACE . .
The K- jw trace was developed in two parts:

the portion for which CO 0, and the remainder for which to^O

For OJ - 0, the K-jto trace must lie entirely on the K-axis.

Since the Wheeler plot is the K- T" plot for &* 0, the K-jOO trace

for (2 must be simply the projection of the Wheeler plot into the K-

axis. From a knowledge of the Wheeler plot, then, the K- j'e*> trace for

co » o can be determined from the real pole-zero configuration of the

open- loop transfer function as shown in Table 2.1.

Following the same procedure for v>-4 O which was used for the root-

locus development in section 2.2, equation 2.4 Was substituted into the

equation e< - 0, resulting in:

fj&-4A£i**'+i(t&-iA?»*C}h* +4&*a>*+-?i4bKtt*4-4A*KV«: 4&F-E*
2.6

When the term "K" is used in conjunction with the "K-JtJ trace",
it is inferred to be the root-locus gain of the open-loop transfer func-
tion. In general, this will also be the gain of ©H= IS 1/^Vs?!Q~ because
A-D-l, *.**fc«-F J

if both coefficients are present in any given open-loop transfer function,
These coefficients are utilized in this development solely to allow the
second-order terms in the open-loop transfer function to go to zero in

special cases.

12



REAL POLE ZERO CONFIGURATION K- jw TRACE ON K-AXIS

I. Single pole/zero.

-^*

Entire K-axis.

II Pole- zero combination (with

root-locus on the <T-axis between

the pole and the zero)

.

AJU)

JWA

^ K

#<r -> <r

III Pole-Pole combination (with roo

locus on the T -axis between the poles)

Kemcrc
MW

=*-

K-axis from the origin to

KEMERG

4«A

*<r -»- K
'ENMftli

IV. Zero-Zero combination (with root 4 K-axis from K^- to infinity,

locus on the T -axis between the

zeros)

Krurr

f 4W

^O-

4^1

-*• r *•!<
>e*/r

V Double pole/zero.
AjtJ

None,

M -r

REAL PART OP K-Jco TRACE FOR CERTAIN OPEN-LOOP POLE-ZERO
CONFIGURATIONS

Table 2.1

13



Immediately, difficulty in obtaining a simple, analytic solution was

encountered, because equation 2.6 is NOT the equation of a simple conic

9 2 o 2
section. The term 8ADKW suggests a cubic, and the term 4A K^co

suggests a quartic equation. An analytic solution of the quartic equa-

tion 2.6, although possible, would not yeild an "easy" method of deter-

mining the K- jte trace.

Two possible graphical methods of solution of equation 2.6 were

considered: (1) the "partitioning" method, and (2) an "approximation"

method.

(1)
"Partitioning" method . The method has been generally

described elsewhere as follows: any polynomial (up to

about fifth degree) can be "partitioned" by dividing the

entire polynomial by one or more terms of the polynomial,

yielding an equation in root-locus form, i.e., GH =-1, where

GH is some combination of poles and zeros multiplied by some

variable. For example, the polynomial

X4+bxN-c%* + d% + e = O

A. i 3
can be partitioned by dividing by ( % + bX. ), yielding

the root-locus form,

where c is the "root-locus" variable. In order to use

this method, the original characteristic equation was

utilized, and (JGO ) was considered as the third variable,

yielding

14



Difficulty was immediately encountered due to the

presence of the cross-variable terms, and no amount

of juggling would enable the ,, root-locus" variable, <T ,

to be separated in such a manner that the "root-locus

form" of equation 2.7 could be written. Basically, this

method required the defining of a new vector H* K*|«J
,

to provide a correspondence to the I.aplacian variable in

the root- locus plot, as was shown in chapter I. In-

spection of equation 2.7 shows why this method could not

be adopted - the required separation of variables could

not be achieved.

(2) "Approximation" method . Returning to the general

second-order open- loop transfer function,

the denominator was divided into the numerator, resulting

in

Is -rr + r—i—~ r<*H= "5" +
T>4* + e*+F 2.8

where B'rB-^ and c'=C--^ . Defining

(<5H) * ITT—=—=~ , it was noted that (GH) had the
U>4**fAtr

appearance of an open-loop transfer function similar to

GH, the only difference being the number and positions of the

zeros. Furthermore, 1 + (GH) » was known to yield the

equation of an ellipse in the K-Jto plane? This was proved

by returning to equation 2 6;

The two cross-variable terms both involved

the coefficient A. -Since the presence of

15



these terms precluded equation 2.6 from repre-

senting a conic section, their elimination (by

setting A 0) would result in the desired conic

section. Performing this operation, collecting

terms and completing the square in K resulted in

the equation

^(B*F-Bct+c*D) ^(B JF-BcE4ca
l>) 2 .9

By inspection, equation 2.9 is the equation of

an ellipse centered at [K- "*gjr )
tasO

j

with semi-axes given by J 6 F~fic£ 4c*fr and

& nId^f-bce+c^) .

Since (GH) yielded an ellipse in the K-^oj plane, the

relationship between GH and (GH) was determined in an

effort to obtain information about the K-J*0 trace result-

ing from GH This was accomplished by returning to the

root-locus plots for the two transfer functions, since

both plots must yield circles:

The root-locus plot of GH was a circle having a

center and radius as defined in equation 2.5. Plugging

these formulae with A - 0, B B and C - C resulted

in the center and radius of the circle for (GH) as
i

Substituting b' • B g- and c' - C--^f , it was

found that the center and radius of the circle for

(GH) expressed in terms of the variables of GH were

16



identical to the center and radius of the circle for

GH! This is shown graphically in Fig. 2.1. The basic

relationship between GH and (GH) can be seen by in-

spection of Fig. 2.1. The effect of the division per-

formed to obtain (GH) was to move the zero at 2
X

to

the center of the circle and the zero at Hj to in-

finity. The root- loci of the two functions for u>-&0

are identical in shape and position, the only difference

being the values of the root-locus gains at correspond-

ing points on the circles.

With this correspondence established, it was inferred

that the K-
J<*>

trace for GH must be in the shape of some

sort of "stretched" ellipse with the same maximum U> as

that for the true, ellipse of (GH) . To quickly sketch

the K-jW trace for GH, then, it would be sufficient to

determine the key points given by K-^-p = the value of

the root-locus gain for which the root-locus departs the

A
7" -axis, KENT — the value of the root-locus gain for

A
which the root-locus enters the T -axis, and K^AX « the

value of the root-locus gain at the peak (maximum (J ) of

the root-locus circle. Since ^emerg and K^-, must both

lie on the K-axis, and since the value of to corresponding

to Kj.^ is known from the radius of th$ root-locus circle,

the key points of the K-jfe* trace are determined. Kpw-np

and K__, are quickly available from the Wheeler plot, and

KMA-_ is equally quickly available by a simple measurement

on the root-locus plot. With these key points, then, and

17



ROOT-LOCUS PLOTS FOR GH AND (GH) FOR GH

AND JW>0.

Fig. 2.1

18



knowing the general shape of the curve, the K-J<o trace

can be quickly sketched.

For the special cat* In which OH contains no seros, naithar aquation

2.9 nor the approximation method provide a valid solution to the K- /<o

trace. This was intuitively obvious, because an open-loop transfer

function containing no zeros yield's, a root-locus plot for LilO which

is an OPEN curve, i.e., the curve does not close on itself except at

infinity. Consequently, the projection of the three-dimensional curve

onto the K- jt*> plane should also be an open curve. Further, it must be

a conic section as may be seen by setting A » B « in equation 2.6.

The K- J«o trace for this case, then, must be a- straight line, a para-

bola or a hyperbola. Substituting A B - into equation 2.6 and re-

arranging terms resulted in the equation

«' »£[*(! -£jV|. 2 . 10

Equation 2.10 is the equation of a parabola symmetrical with respect to

the K-axis with vertex at [ K»2c5T *
"c » <** 0]> thus substantiating

the intuitive result anticipated.

It was concluded that the K- j<*> traces for all second-order systems

may be obtained quickly and accurately utilizing Table 2.1 for the

portions for which O- and Table 2.2 for the portions for which w^0.

19



OPEN-LOOP
TRANSFER FUNCTION

SHAPE OF
K-jw TRACE

METHOD OF
OBTAINING

ALTERNATING POLES
AND ZEROS

STRAIGHT LINE
(K-AXIS)

PROJECTION OF
WHEELER PLOT

NO ZEROS PARABOLA EQUATION 2.10

I ZERO ELLIPSE EQUATION 2.9

2 ZEROS

i

"STRETCHED"
ELLIPSE

APPROXIMATION
METHOD

SHAPE OF R-Jeo TRACE FOR VARIOUS OPEN-LOOP POLE-ZERO
CONFIGURATIONS, to^O.

Table 2.2

2.4 EXAMPLES . Four examples were selected to Illustrate the various

solutions for the root-locus plot and the K-j 40 trace for second-order

systems.

1. <5M =

This is the case of alternating poles and zeros, and the plots are

shown in Fig. 2.2.

2. SH* £-

The root-locus plot for (&4-0 is a straight line parallel to the

JtO -axis and passing through the point T-~X*. The K- J[& trace

is a parabola symmetrical with respect to the K-axis with vertex

at [ K mr-Z m k» & m Oj • These curves are shown in Fig. 2.3.

3. mr tWl m Jk^ »»*»«, g^j dlfrj ***<

The root-locus plot i s a circle centered at ( <T

radius K-^&r + ls)
1 * ZJJ * B.AiA,

-5, CO - 0)

with
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10 -3
The K-jto trace is an ellipse centered at ( K —;— « 7,

<«> - 0) with (semi-axis)K
- Z^l-U+tt - 4*HT - 6.928 and

(semi-axis)j^ - '{H 3.464. These are plotted in Fig. 2.4.

The root-locus plot is a circle centered at ( V ~"JZj~ = -2.5,

O>-0) with radius R - ^ ^y- * (*^>* - yJaTT » O. &7.

The K- jtt> trace is a "stretched" ellipse with key points K-^-g

0.0718, K • 13.92, Kj^ 1.0. These curves are plotted in
ENT

Fig. 2.5.
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HIGHER-ORDER SYSTEMS

3.1. PROCEDURE . The methods developed in the previous chapter could

not be readily extended to give solutions for higher order systems.

Therefore a different approach to the problem was indicated.

Since the desired procedure was to be an addition to the root-

locus method it seemed logical to try to extend root-locus techniques

to achieve the desired projection. On the s-plane, the root-locus

must satisfy both the magnitude and angle criterions. Those points

which satisfy the angle requirement can be accurately determined by

use of a Spi-rule, but this would be a very tedious procedure if other

guide lines were not available. In practice, the centroid is computed

and the asymptotes are drawn, then the root-locus can be rapidly "rough-

ed in" with the Spi-rule used mainly as a check and to provide added

accuracy if desired. Thus, if a method of determining the centroid

and the angles of asymptotes could be found in the K-j<&> plane, per-

haps with practice the desired K- „jU) projection could also be "roughed

in" and then checked for accuracy as necessary by some other means.

3.2 ASYMPTOTES . To develop a method of finding asymptotes in the K-jo>

plane it was helpful to consider first why there were asymptotes in

the ^-^toplane. As the parameter, K, is allowed to become very large,

those root 8 which are approaching zeros at infinity are distant from

the open loop poles and zeros. The angle condition must be met by the

contribution from the excess poles since the algebraic sum of the angles

from the remaining poles and zeros will effectively cancel. Thus, as K

goes to infinity, the root locations allowable are limited to lying on
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asymptotes having angles which, when multiplied by the number of excess

poles, satisfy the angle criterion. The angle of the asymptote must be

measured at the effective center or centroid of the open loop poles.

In much the same manner the value of gain required for a point on

the s-plane asymptote which is distant from the open loop poles and

zeros is determined by the product of the distances from that point to

the excess poles, since the distances from the other poles and zeros will

effectively cancel. An approximation for the gain at this point is the

distance to the system centroid raised to the power n, where n is the

number of excess poles. Referring to Fig. 3.1, the distance from a

point, R, on the s-plane asymptote to the centroid is

where U), is the value of (« at R^ and oC is the s-plane asymptote angle,

Thus the magnitude of the gain is given approximately by

*l - [i&rf
3.1

the approximation being valid if UJ, is very large. Consequently,

solving equation 3.1 for U>, and assuming U), very large gave

tU = (Smcg^VW 3.2

where °C » the angle of the s-plane asymptote, and n » the number of

excess poles. Equation 3.2 was obviously not linear in K and Lu ,

implying the asymptotes in the s-plane did not transfer into straight

line asymptotes in the K- jU) plane under the approximation used.

This implication appeared to be a serious drawback to this method,

because curved asymptotes could not, in general, be quickly and easily

plotted. However, a compromise solution was reached: by letting the
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gain variable be ^|K\
, equation 3,2 is the equation pf a straight line,

since sin oC is a constant for any given asymptote. Further, this

straight line, which is the s-plane asymptote transferred into the 'VlKl -J^

plane , always passes through the origin with slope sin*c . Consequent-

ly, the only knowledge of the system required to quickly plot the asympto-

tes is n, the number of excess poles of the system. The advantage of

having straight-line asymptotes, then, made the adoption of the NlKl-j^

plane advisable for obtaining the required trace. The term "K-j<*) trace"

will still be utilized in this discussion, but the abscissa is implied

to be /
v / K\ .A discussion of the relative advantages and/or dis-

advantages of adopting this procedure is contained in section 3.5.

Since the root locus is symmetric about the real axis the K-ju>

trace will be symmetric about the ™KI axis. Thus, as in the root locus,

only the upper or positive ^u>- axis need be used since the asymptotes
I

and trace for the negative half would be the mirror image of the posi-

tive half.

It should be noted that for negative values of K the root locus

obeys the same magnitude criterion as for positive K. Therefore the

asymptote in the *y| K| "4 1** plane will obey the same equation for both

positive and negative K, that is, equation 3.2. Thus the trace for

negative K could be plotted on the same axes as for the positive K trace,

but for clarity the following convention was established: The positive

trace is drawn on the +^J|K| coordinate and negative trace on the

It should be noted that for higher order systems there will be n
asymptotes on the s-plane, each of which will be defined by an angle oC .

There will be a K-4*»> asymptote for each s-plane asymptote defined
by equation 3.2 utilizing the appropriate tc
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-"tylKl axis, with the ju -axis passing through the zero point of the

abscissa. Care must be used in plotting the K- ju> asymptotes, because

they are not , in general, equally spaced (in the angular sense) as are

the s-plane asymptotes. The K-^Ui asymptotes for positive K and those

for negative K must be sketched separately, for the angles of the s-plane

asymptotes are different for positive and negative values of K. This is

shown graphically in Fig. 3.2.

\
\
\
\

•Positive K

— Negative K

\
\
\

£hi

/

/

=tH fil l I II

AS1

4ju>

=> <r

ROOT LOCUS AND K-jOj ASYMPTOTES FOR GH
(S-K*.)*

NEGATIVE VALUES OF K
,
^C»2tO.

Fig. 3.2

FOR POSITIVE AND
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3.3 K-4UJ TRACE . Having determined the asymptotes in the ^A k
l

m \*V

plane, the first step in determining the K- ^w trace involved a review

of the procedures for sketching the K- \tu trace of second-order systems

as outlined in Tables 2.1 and 2.2.

As a first consideration, the real double pole/zero combination

(as shown in category V of Table 2.1) produced no trace on the K-axis,

and therefore had no trace on the WTkT -axis, since the latter axis

differed from the former only by a scale factor. Using Table 2.2 (for

no zeros) and equation 2.10 yielded the equation

0o
x = K 3.3

Transforming to the *vl^| coordinate, equation 3.3 became

which is precisely the equation of the asymptote in the VlKl-jto plane.

Therefore, the K- ju> trace for such a system lay entirely on the asymp-

totes, as shown in Fig. 3.3.

4jW

<*)

4«* a

>cr
-a

ROOT LOCUS PLOT AND K-jto TRACE FOR GH -

Fig. 3.3

j]L—9 KfcOANDjWSo
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The extension to a real multiple pole of any order, then, was simply

a combination of the foregoing result and successive applications of

Table 2.1, resulting in the conclusion that a real multiple pole/multi-

ple zero of any multiplicity will have a K-juu trace which coincides

precisely with the K- ^u> asymptotes. For poles of odd multiplicity,

of course, the entire ^v|K| -axis will be part of the trace, since

the odd pole falls under category I in Table 2.1.

As the poles of a real .double pole combination are separated along

the o- -axis, the change in the K- „jU> trace (from that obtained for

the double pole) was expected to be most noticeable near the origin,

since the curve must become asymptotic for increasing values of K.

Further, the value of K at which the trace departs the K-axis has al-

ready been determined to be *__,„ (which becomes 'v^Z^l- on the Vk

-axis). Consequently, the K-ju> trace was sketched as shown in Fig.

3.4.

Ajw

*3#s
-b -a

4*4

-»»<r

NKewsi*

VTkT

ROOT LOCUS PLOT AMD K- ^u> TRACE FOR GH - A/ A\ »**° Am j ** *

Fig. 3.4.
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For this special case, i.e., an open-loop transfer function GH "
(4 +^(4*b)

'

an interesting property of the K- 4W trace became apparent. The K-jCO

trace in Fig. 3.4 bore a striking resemblance to the root locus plot of

GH
U*Q.)*(A*Vtf

v , as may be seen by comparing Fig. 3.4 with Fig. 3.5,

if the pole, a, was related to ^

K

EMERG

> r

ROOT LOCUS PLOT FOR GH - 7 -£ —
, K*0 AND 4W ^0

Fig. 3.5

Since all points on the root locus shown in Fig. 3.5 must necessarily

satisfy the angle criterion, it was felt that a similar angle criterion

might be established for the K- joj trace. Locating a simulated double

pole at ^^EMERG and another simulated double pole at » KEMERG in Fi6-

3.4, the K- \u> trace satisfied a 180° angle criterion with respect to

these simulated poles - precisely the same angle criterion established

for the root locus plot! It was concluded, therefore, that the K-4^

trace for an open-loop transfer function consisting of two real poles

could be sketched quickly and could be checked directly with a Spi-rule

(utilizing the simulated poles described earlier) if greater accuracy

was required.
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For an open-loop transfer function consisting of a pair of com-

plex poles, the K- juj trace was easier to sketch than for any other

pole-tero configuration. Since the ju> -axis was common to both the

root locus plot and the K-jUi trace, and since the trace must be

asymptotic, it was a simple matter to sketch the trace departing the

J
U> -axis at the complex values of the poles and approaching the 45°

asymptote. The K-JCO trace for such a pair of complex poles is shown

in Fig. 3.6.

ROOT LOCUS PLOT AND K- 4<*> TRACE FOR GH
K*6 AND AWSto IM^SfiJlA+O*-^

Fig. 3.6

The procedures to use in sketching the K- ^u> traces for the fore-

going "basic pole configurations" of an open-loop transfer function are

summarized in Table 3.1. These procedures are equally applicable by re-

placing the word "pole" by the word "zero", " ^ K
EMERG

" b? "V*W'» and

"K - 0" by "K infinity" where they appear in Table 3.1. Thus, Table 3.1

is applicable to both basic pole and basic zero configurations.

Only one more general type of response remained to complete the pro-

cedures for obtaining the K-jtu trace for any given open-loop transfer

function: namely, the influence upon the trace of poles and zeros con-

tained in the transfer function in addition to the basic combinations

already discussed. The influence of these additional poles and zeros
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BASIC POLE CONFIGURATION K- joj TRACE

I. Multiple (real) pole.

•

1. Even multiplicity:

a. Trace coincident with
asymptotes for all 4°° •

2. Odd multiplicity:

a. Trace coincident with

asymptotes for jto
^f. o

b. Trace coincident with

"W\k[ -axis for jw:0.

II. Real pole-pole combination
(with root locus on o- -axis
between the poles).

Coincident with "VTkT -axis

from K - to VT~ - f* R̂G
-

then rising toward asymptote.

III. Complex pair of poles. Departs jw -axis at ju> = complex
part of pole, approaches the

K- ju> asymptote.

RULES FOR SHAPE OF K- aU* TRACE FOR BASIC POLE CONFIGURATIONS

OF OPEN-LOOP TRANSFER FUNCTION
Table 3.1

was most apparent graphically by returning to the multiple pole concept.

Starting with a real pole. of multiplicity three, the influence upon the

K- 4W trace of moving one of these three poles along the 0" -axis

while keeping the other two poles fixed was to cause the trace to "sag"

below the trace obtained for the triple pole. This is shown in Fig. 3.7.

It was possible to predict the sag intuitively by considering the graphi-

cal definition of K. Since K is defined (graphically) as the product of

the distances to poles divided by the product of the distances to zeros,

it was immediately obvious that, for a given value of 41*) in the lower

range where the root locus of Fig. 3.7(b) was distinctly separate from

the asymptote, the value of K must be larger than the value in Fig. 3.7(a).
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J^ *

"SAG" EFFECT OF ADDITIONAL POLE UPON K- 4U) TRACE
Fig. 3.7

Consequently, the sag was anticipated. In addition, as K was increased

to larger values, the poles of Fig. 3.7(b) would appear closer together

from the point on the root locus where K was measured until, in the limit

as K approached infinity, the poles would appear as a triple pole. This,

then, caused the asymptotic return of the K- ^«*> trace after the sag ef-

fect;.

The effect of zeros upon the K- ^to trace was obtained in a similar

manner, but in order to show the effect upon a single diagram, the number

of excess poles, n, of the open-loop transfer function had to remain
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unchanged in order that the ^| K\ -axis remained the same. Therefore

pole-zero pairs were added. By again considering the graphical defini-

tion of K, it was apparent that two effects would be evident depending

upon whether the pole or the zero of the added pair was closer to a

test point on the root locus. For the case where the zero was closer to

the root locus, the distance to the pole exceeded the distance to the zero,

resulting in an overall value of K which was larger than the value before

the pair was added. Consequently, the sag effect was again produced.

Where the pole of the pair was closer to the root-locus than the zero,

the reverse effect resulted due to a reduction in K, which caused the K-ju)

trace to "rise" above the trace obtained without the pole-zero pair.

These effects are illustrated in Fig. 3.8.

Based upon the procedures developed for sketching the K- Ju> trace,

the following rules were established to be used as a general procedure

to be followed in obtaining the K-_ju> trace for any given open-loop

transfer function!-^

1. Sketch the root locus plot for the open-loop system.

2. Group the poles of the transfer function into the

basic configurations listed in Table 3.1. Poles and

zeros left over after this basic grouping is performed

are designated in pairs as "additional pole-zero pairs".

3. Poles left over after the pairing operation described

above are paired together (if there is root locus on

the (T -axis between them) and designated as "pole-pole

combinations".

4. Any real pole remaining is designated as an "unpaired
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QH „ K(^c)

L

*<r

^AG T><-»* TO
M>t>»TiOVA;»_ "Poc£
AT A = -b

SAG "OOETO T>Oue

=>^fi<i

fa)

SAG EFFECTS DUE TO ADDITIONAL POLE AND POLE-ZERO PAIR, K*0 AND 4W >0

/Aju> j<*)> k

*<r

-<J -c -b -a.
(k>)

S4CTXJBTO ftDDiTlO/VAL

T**-fc AT -4*-b

1?«s* (A&oue. s^t) t>oe to -pou« -

g»*fi*I

RISE EFFECT DUE TO POLE-ZERO PAIR (PORTION OF K- }U> TRACE DUE
TO CIRCULAR ROOT LOCUS NOT SHOWN)

SAG AND RISE EFFECTS DUE TO ADDITIONAL POLES AND POLE-ZERO PAIRS

Fig. 3.8
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pole".
1

5. Sketch the K- 4u> trace for to by utilizing the rules

outlined in Table 2.1.

6. Sketch the K- ju> trace for Go ^ o for all basic pole con-

figurations by utilizing the rules outlined in Table 3.1.

7. Correct for the rise and sag effects of all additional

pole-zero pairs (and an unpaired pole, if present).

8. To achieve greater accuracy if required:

a. For a second-order system, apply the rules of

chapter II to obtain an exact K- \W> trace.

b. For higher-order systems, measure the distances

to poles and zeros from a few selected points on

the root locus, then calculate K to achieve greater

accuracy within any questionable range of K. This

procedure is closely analagous to the refinement

of a root locus sketch with a Spi-rule to achieve

J"^ greater accuracy.

With practice, the K- jto trace for any open-loop transfer function

can be rapidly and accurately sketched utilizing the rules set down pre-

viously. Several examples for certain types of transfer functions are

1

Steps 3 and 4 may result in zero-zero combinations and an unpaired
zero if the open-loop transfer function should contain more zeros than
poles. By the same token, step 2 could result in multiple real zeros.
However, these eventualities are rare enough in engineering practice that
they are not specifically mentioned in these rules. Should these situa-
tions be encountered, all the procedures developed for poles are equally
applicable to zeros and may be applied in either case.

39



illustrated in section 3.4.

3.4 EXAMPLES . The following examples were chosen to illustrate the

procedures developed for sketching the K- ju-> trace

i

1. GH - -£- r

a. The root locus for this system was sketched and is

shown in Fig. 3.9.

b. Since there are three poles the K- jU> trace must be

on the ^/K- 4^ coordinates.

c. The asymptote on the ""v K- 410 plane will have a

slope equal to sin 60° or 0.866.

d. The open loop transfer function is composed of a

double real pole and an "unpaired" pole so that the K-

trace would be expected to originate at the origin and sag

below the asymptote due to the "unpaired" pole. The re-

sulting K- ^u> trace is shown in Fig. 3.10.

e. To verify the accuracy of the sketch, the gain required

at Co equal to one was determined from the root locus to

be equal to ,2.55. From the K- 40a trace at U> equal one,

fyT» 138, or K - 2.62.

2. GH - K (4tl)

a. The root locus was sketched as in Fig. 3.11.

b. The open loop transfer function contains a double pole,

an "additional pole-zero pair" and an "unpaired" pole.

Thus for 4°°^ ° » tne trace will originate at the origin

and will sag below the asymptote due to both the "unpaired"

pole and the "additional unpaired pole-zero pair". The

effect of the pole-zero pair, **"^r * wiH De to increase
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the gain required to obtain a particular value of Co ,

since the zero is nearer to the test point than the pole.

Thus the K- 4^ trace will have a larger sag than was

found in the previous example. The K- *<*> trace is shown

in Fig. 3.12.

c. To check the accuracy of the K- jw sketch, the gain

was compared at Co equal to one. From the root locus, K

was equal to 3.3. The K- \U> sketch gave "^JIT = 1.49,

or K - 3.31. At Cu - 3.0 the root locus gain equalled 50

and the K- 4 CO trace gave ^/IT - 3.67 or K 49.4.

3. GH - &l±±fl

a. The root locus is shown in Fig. 3.13.

b. As in example 2, the open loop transfer function is

composed of a double pole, an "unpaired" pole, and an

"additional pole-zero pair". In this case the "additional

pole-zero pair" is placed so that the pole is closer to

the test point than the zero, which tends to move the K-jco

trace upward-so far, in fact, that the trace actually

crosses the asymptote. This upward tendency will be partly

counteracted by the "unpaired" p<?le which will cause the

K- ju> trace to "sag" near the origin. The resulting K- «i<*>

trace is shown in Fig. 3.14. It should be noted that the

effect of the "additional pole-zero pair" will change as to

becomes greater than 4.4. Then, the pole will be farther

from the test point than the zero, which will tend to make

the trace sag, but this sag will be small since the test

point is quite distant from the open-loop poles and zero.
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This sag causes the asymptotic return of the trace to the

upper side of the asymptote.

3.5 INTERPRETATION OF K- 4 U> TRACE . Having attained the initial ob-

jective of determining the K- 4^ trace for any open-loop transfer

function, the results remained to be interpreted with respect to the

reasons for performing the determination as stated in chapter I. The

difficulty anticipated in interpretation of the trace was the use of the

*{]
J k| abscissa for third (and higher) order systems.

For the purpose of obtaining information about the position of the

imaginary part of complex roots of the closed-loop system for particular

values of K, the use of the ^/\V<| abscissa was not considered to be ob-

jectionable. This information is available from the *V I *<V 'V^ co-

ordinates with a simple slide-rule calculation for any desired value of

K
i

For the purpose of obtaining sensitivity information over a given

range of K, however, the A| ( *| abscissa is not so handy. The K- jw

trace plotted on the A|\K\ ~V** plane can not be used conveniently to de-

termine whether the frequency variation is constant, linear, exponential,

asymptotic, etc. , over a given range of K. This handicap may be easily

overcome, however, due to the fact that the conversion from ^y|KJ to
| K|

can be readily accomplished with a slide-rule. By choosing a few key

points on the trace in the^VM -j'** plane, the conversion to the K-./CJ

plane is readily accomplished, and the trace in the latter plane can

be quickly sketched. Little is sacrificed in speed to obtain the addi-

tional information provided by the K- 4O3 coordinates, and the accuracy

of the trace is still basically dependent upon the accuracy of the root

locus plot. Speed of plotting must necessarily be inversely proportional
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to the accuracy achieved, but the majority of the time is devoted to an

accurate root locus plot and an accurate K- \W trace in the V/<) "\\w

plane - the conversion of the trace to the K- ,jU> plane would involve

a negligible amount of time in comparison to that amount already spent in

obtaining the first trace.

It was concluded, therefore, that the use of the V I ^1 abscissa

does not present a material disadvantage to the foregoing methods of

obtaining the K- \u0 trace.
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IV

CONCLUSION

The root locus technique is readily extendable into three dimensions

Projecting the three-dimensional root locus plot upon the K- ju> plane

(for second-order systems) or upon the 'vTkT ~\^ plane (for systems of

any order) may be quickly and accurately accomplished to obtain the K- 4W

trace of the three-dimensional locus. Closed-loop system response may

then be evaluated from the K.-^u> trace with regard to the variation of

the imaginary part of complex roots with the root locus gain and with re-

gard to sensitivity over any range of the root locus gain.

This paper develops and lists the rules for obtaining the K- ^co

trace, the utilization of which requires only a knowledge of the pole-

zero configuration of the open-loop transfer function. Several practi-

cal examples applying these rules are illustrated in chapters II and III.

The use of the K-^u>
,
trace provides another useful tool for the

engineer in the design and analysis of feedback control systems.
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